p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.10D4, C24.6C22, C23.77C23, (C2×C4)⋊3D4, C2.6C22≀C2, C2.7(C4⋊D4), (C22×D4).3C2, C22.70(C2×D4), C2.6(C4.4D4), C2.C42⋊11C2, C22.37(C4○D4), (C22×C4).26C22, C2.6(C22.D4), (C2×C4⋊C4)⋊5C2, (C2×C22⋊C4)⋊7C2, SmallGroup(64,75)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.10D4
G = < a,b,c,d,e | a2=b2=c2=d4=e2=1, eae=ab=ba, ac=ca, dad-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=bd-1 >
Subgroups: 229 in 119 conjugacy classes, 39 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C23.10D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C23.10D4
Character table of C23.10D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ16 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | complex lifted from C4○D4 |
(1 5)(2 11)(3 7)(4 9)(6 19)(8 17)(10 18)(12 20)(13 25)(14 24)(15 27)(16 22)(21 31)(23 29)(26 30)(28 32)
(1 22)(2 23)(3 24)(4 21)(5 16)(6 13)(7 14)(8 15)(9 31)(10 32)(11 29)(12 30)(17 27)(18 28)(19 25)(20 26)
(1 28)(2 25)(3 26)(4 27)(5 32)(6 29)(7 30)(8 31)(9 15)(10 16)(11 13)(12 14)(17 21)(18 22)(19 23)(20 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(2 21)(4 23)(5 16)(6 8)(7 14)(9 11)(10 32)(12 30)(13 15)(17 25)(19 27)(29 31)
G:=sub<Sym(32)| (1,5)(2,11)(3,7)(4,9)(6,19)(8,17)(10,18)(12,20)(13,25)(14,24)(15,27)(16,22)(21,31)(23,29)(26,30)(28,32), (1,22)(2,23)(3,24)(4,21)(5,16)(6,13)(7,14)(8,15)(9,31)(10,32)(11,29)(12,30)(17,27)(18,28)(19,25)(20,26), (1,28)(2,25)(3,26)(4,27)(5,32)(6,29)(7,30)(8,31)(9,15)(10,16)(11,13)(12,14)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,21)(4,23)(5,16)(6,8)(7,14)(9,11)(10,32)(12,30)(13,15)(17,25)(19,27)(29,31)>;
G:=Group( (1,5)(2,11)(3,7)(4,9)(6,19)(8,17)(10,18)(12,20)(13,25)(14,24)(15,27)(16,22)(21,31)(23,29)(26,30)(28,32), (1,22)(2,23)(3,24)(4,21)(5,16)(6,13)(7,14)(8,15)(9,31)(10,32)(11,29)(12,30)(17,27)(18,28)(19,25)(20,26), (1,28)(2,25)(3,26)(4,27)(5,32)(6,29)(7,30)(8,31)(9,15)(10,16)(11,13)(12,14)(17,21)(18,22)(19,23)(20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (2,21)(4,23)(5,16)(6,8)(7,14)(9,11)(10,32)(12,30)(13,15)(17,25)(19,27)(29,31) );
G=PermutationGroup([[(1,5),(2,11),(3,7),(4,9),(6,19),(8,17),(10,18),(12,20),(13,25),(14,24),(15,27),(16,22),(21,31),(23,29),(26,30),(28,32)], [(1,22),(2,23),(3,24),(4,21),(5,16),(6,13),(7,14),(8,15),(9,31),(10,32),(11,29),(12,30),(17,27),(18,28),(19,25),(20,26)], [(1,28),(2,25),(3,26),(4,27),(5,32),(6,29),(7,30),(8,31),(9,15),(10,16),(11,13),(12,14),(17,21),(18,22),(19,23),(20,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(2,21),(4,23),(5,16),(6,8),(7,14),(9,11),(10,32),(12,30),(13,15),(17,25),(19,27),(29,31)]])
C23.10D4 is a maximal subgroup of
C4⋊C4.D4 (C2×C4)⋊SD16 C23.288C24 C42⋊15D4 C23.295C24 C42.163D4 C24.243C23 C24.244C23 C23.308C24 C24⋊8D4 C23.311C24 C24.249C23 C23.315C24 C23.316C24 C23.318C24 C24.254C23 C23.322C24 C23.324C24 C24.258C23 C24.259C23 C23.327C24 C23.328C24 C24.262C23 C24.264C23 C23.335C24 C24.269C23 C23.344C24 C23.345C24 C24.276C23 C24.278C23 C24.279C23 C23.359C24 C23.360C24 C24.282C23 C24.283C23 C23.364C24 C24.286C23 C23.367C24 C23.368C24 C24.289C23 C23.372C24 C23.374C24 C24.293C23 C23.377C24 C23.379C24 C23.385C24 C23.390C24 C23.391C24 C23.400C24 C23.416C24 C23.418C24 C24.311C23 C23.426C24 C23.431C24 C23.434C24 C42.165D4 C42⋊18D4 C23.443C24 C42⋊21D4 C42.171D4 C24.326C23 C24.327C23 C23.455C24 C23.458C24 C24.331C23 C24.332C23 C42.172D4 C23.472C24 C24.340C23 C23.478C24 C23.491C24 C23.493C24 C24.347C23 C24.348C23 C42⋊22D4 C23.500C24 C42⋊23D4 C23.502C24 C42⋊24D4 C42⋊25D4 C42⋊26D4 C24⋊9D4 C24.361C23 C24⋊10D4 C24.587C23 C42⋊27D4 C42⋊28D4 C23.524C24 C23.530C24 C42.189D4 C42.190D4 C23.535C24 C42⋊30D4 C24.374C23 C24.592C23 C42.194D4 C23.548C24 C24.375C23 C23.551C24 C23.553C24 C24.377C23 C42⋊32D4 C24.378C23 C23.568C24 C23.569C24 C23.570C24 C23.571C24 C23.572C24 C23.573C24 C23.574C24 C23.576C24 C23.578C24 C25⋊C22 C23.580C24 C23.581C24 C24.389C23 C23.584C24 C23.585C24 C24.393C23 C24.394C23 C24.395C23 C23.591C24 C24.401C23 C23.595C24 C24.403C23 C23.597C24 C24.406C23 C23.600C24 C24.407C23 C23.602C24 C23.603C24 C23.605C24 C23.606C24 C23.607C24 C23.608C24 C24.411C23 C24.412C23 C23.611C24 C23.612C24 C24.413C23 C23.615C24 C23.618C24 C24.418C23 C23.627C24 C24.420C23 C23.630C24 C23.631C24 C23.633C24 C23.637C24 C23.640C24 C23.641C24 C23.643C24 C24.432C23 C23.649C24 C24.435C23 C23.651C24 C23.652C24 C24.437C23 C23.656C24 C24.438C23 C24.440C23 C23.678C24 C23.679C24 C23.681C24 C23.682C24 C23.685C24 C23.686C24 C23.695C24 C23.696C24 C23.697C24 C23.700C24 C23.701C24 C23.703C24 C23.708C24 C24⋊11D4 C24.459C23 C23.714C24 C23.716C24 C42⋊33D4 C42⋊34D4 C42.199D4 C42⋊35D4 C23.724C24 C23.725C24 C23.726C24 C23.727C24 C23.728C24 C23.729C24 C23.730C24 C23.732C24 C23.737C24
(C2×C4)⋊D4p: (C2×C4)⋊D8 (C2×C4)⋊3D12 (C2×C4)⋊3D20 (C2×C4)⋊3D28 ...
C24.D2p: C24.94D4 C24.95D4 C24.97D4 C24.25D6 C24.27D6 C24.31D6 C24.14D10 C24.16D10 ...
(C2×C4).D4p: C2.C2≀C4 C6.C22≀C2 (C2×Dic5)⋊3D4 (C2×Dic7)⋊3D4 ...
C23.10D4 is a maximal quotient of
C24.631C23 C24.632C23 M4(2).7D4 C42⋊11D4 C42⋊12D4 C4⋊C4⋊7D4 C4⋊C4.94D4 C4⋊C4.95D4 M4(2).8D4 M4(2).9D4
(C2×C4)⋊D4p: (C2×C4)⋊3D8 (C2×C4)⋊3D12 (C2×C4)⋊3D20 (C2×C4)⋊3D28 ...
C24.D2p: C24.50D4 C24.5Q8 C24.52D4 C24.83D4 C24.84D4 C24.85D4 C24.86D4 M4(2)⋊6D4 ...
(C2×C4p).D4: C4⋊C4.96D4 C4⋊C4.97D4 C4⋊C4.98D4 C42.131D4 M4(2).10D4 M4(2).11D4 C22⋊C4.7D4 (C2×C4)⋊5SD16 ...
Matrix representation of C23.10D4 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;
C23.10D4 in GAP, Magma, Sage, TeX
C_2^3._{10}D_4
% in TeX
G:=Group("C2^3.10D4");
// GroupNames label
G:=SmallGroup(64,75);
// by ID
G=gap.SmallGroup(64,75);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,2,121,362,332,50]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^4=e^2=1,e*a*e=a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b*d^-1>;
// generators/relations
Export